John Badding, professor of chemistry, physics, and materials science and engineering at Penn State, holding a 3D model of a polytwistane nanothread, the focus of the new NSF Center for Nanothread Chemistry.
science-journal

New NSF-funded center to explore chemistry of “nanothreads”

10 May 2019
Image
John Badding, professor of chemistry, physics, and materials science and engineering at Penn State, holding a 3D model of a polytwistane nanothread, the focus of the new NSF Center for Nanothread Chemistry. Credit: Nate Follmer, Penn State
John Badding, professor of chemistry, physics, and materials science and engineering at Penn State, holding a 3D model of a polytwistane nanothread, the focus of the new NSF Center for Nanothread Chemistry. Credit: Nate Follmer, Penn State

The U.S. National Science Foundation (NSF) has awarded $1.8 million to a team of scientists led by John Badding, professor of chemistry, physics, and materials science and engineering at Penn State, to establish the NSF Center for Nanothread Chemistry (CNC). The center will bring together a diverse group of chemists to pioneer research on nanothreads, a new form of carbon molecule. First theoretically predicted at Penn State in 2001 and then synthesized there in 2014, the atoms of nanothreads bond together in a cage-like pattern, akin to the thinnest possible threads of diamond.

“The new Center for Nanothread Chemistry brings together the best researchers from Penn State and around the country to work on science and technology enabled by a new discovery from John Badding’s group in the Department of Chemistry,” said Thomas Mallouk, Evan Pugh University Professor of Chemistry, Biochemistry and Molecular Biology, Physics, and Engineering Science and Mechanics and head of the Department of Chemistry at Penn State. “This is one of only two such centers chosen for support by NSF this year, highlighting the importance of their work. Such centers recognize and support the very high quality of scholarship in the department and in the Eberly College of Science at Penn State.”

The new molecules that are the focus of the new center form when arrays of small molecules – in which each carbon atom has only three neighboring atoms – transform under pressure into parallel arrays of long thread-like molecules in which every carbon atom has four neighbors in a diamond-like geometry. The exterior of the nanothreads are capped by hydrogen atoms.

“Experience shows that the synthesis of a new form of matter such as nanothreads is often foundational,” said Badding, “such that a diverse range of new science and applications is enabled.”

With their truss-like geometry, nanothreads are thicker than conventional polymers such as polyethylene, the pervasive plastic we encounter every day in bottles and bags. From the point of view of traditional polymers, nanothreads are very rigid, but from the point of view of many other solid materials, they are highly flexible. As a result, unique mechanical properties can be anticipated for this “flexible diamond.” For example, they may be as strong or stronger than any material known and yet still remain flexible and resilient. With their exterior hydrogen atoms, they can be considered a “hybrid” of a nanomaterial and a molecule and thus should be much more chemically versatile than other carbon nanomaterials. It also should be possible to attach other molecules to nanothreads that can interact in precisely defined and useful ways because their backbone is so much stiffer than conventional polymers.

A polytwistane nanothread--the focus of the new NSF Center for Nanothread Chemistry--in which each carbon atom (black spheres) is bonded to its four neighbors in a diamond-like configuration. It is surrounded by hydrogen atoms (white spheres). Credit: Badding Laboratory, Penn State

A polytwistane nanothread--the focus of the new NSF Center for Nanothread Chemistry--in which each carbon atom (black spheres) is bonded to its four neighbors in a diamond-like configuration. It is surrounded by hydrogen atoms (white spheres). Credit: Badding Laboratory, Penn State

 

The goals of the center are to investigate the physical and chemical properties of nanothreads, produce whole new families of the molecules with diverse chemical compositions, understand their formation, and develop methods to scale-up their production. Because of their unique

structure and properties, these nanothreads may be useful in application areas such as high-strength composite materials, energy storage, photovoltaics, and catalysis of chemical reactions.

“We intend for the NSF-supported Center for Nanothread Chemistry to launch a new subfield of investigation into the synthesis, functionalization, and properties of these remarkable new nanothreads,” said Vincent Crespi, Distinguished Professor of Physics, Materials Science and Engineering, and Chemistry at Penn State. “As we deepen our understanding of their synthesis and use this understanding to ramp up production, more and more researchers will be able to join in discovering and developing their unique properties."

The NSF Centers for Chemical Innovation (CCI) Program supports research centers focused on major, long-term fundamental chemical research challenges by integrating research, innovation, education, broadening participation, and informal science communication. The two Phase I centers selected for funding out of many dozens in 2018 can compete for a $20 million Phase II center in two years, which is renewable after a further five years.

Part of the center’s mission will be to educate and help develop the next generation of science professionals working with nanomaterials. In addition to Badding and Crespi at Penn State, the team includes solid state organic chemist Elizabeth Elacqua at Penn State, theorist Roald Hoffmann at Cornell University, organic chemist Dirk Trauner at New York University, NMR spectroscopist Klaus Schmidt-Rohr at Brandeis University, and a group of talented graduate students and post-doctoral associates.