Skip to main content
Boundary criticality of the O(N) model in d = 3 critically revisited
Add to Calendar 2020-11-09T20:30:00 2020-11-09T21:30:00 UTC Boundary criticality of the O(N) model in d = 3 critically revisited Zoom link:
Start DateMon, Nov 09, 2020
3:30 PM
End DateMon, Nov 09, 2020
4:30 PM
Presented By
Maxim Metlitski, Massachusetts Institute of Technology
Event Series: CAMP Seminar

It is known that the classical O(N) model in dimension d > 3 at its bulk critical point admits three boundary universality classes: the ordinary, the extra-ordinary and the special. The extraordinary fixed point corresponds to the bulk transition occurring in the presence of an ordered boundary, while the special fixed point corresponds to a boundary phase transition between the ordinary and the extra-ordinary classes. While the ordinary fixed point survives in d = 3, it is less clear what happens to the extra-ordinary and special fixed points when d = 3 and N is greater or equal to 2. I'll show that formally treating N as a continuous parameter, there exists a critical value Nc > 2 separating two distinct regimes. For N < Nc the extra-ordinary fixed point survives in d = 3, albeit in a modified form: the long-range boundary order is lost, instead, the order parameter correlation function decays as a power of log r.  For N > Nc there is no fixed point with order parameter correlations decaying slower than power law. I'll discuss several scenarios for the evolution of the system with N through Nc. One of these scenarios might explain recent numerical results on boundary criticality in 2+1D quantum spin systems with SO(3) symmetry.