Host: Kohta Murase
1:30 PM
2:30 PM
HEP Seminar
I will describe how current and upcoming 21-cm measurements during cosmic dawn can teach us a great deal about dark matter and dark energy. The cosmic dawn saw the formation of the first stars, which coupled the spin temperature of hydrogen to its kinetic temperature---producing 21-cm absorption. The depth of this absorption acts as a thermostat, allowing us to constrain exotic cooling or heating due to dark matter. Additionally, the timing of the 21-cm signal strongly depends on the abundance of the small minihalos that hosted the first stars, allowing us to tightly constrain dark-matter models with suppressed power, such as warm or fuzzy dark matter. Finally, I will describe a standard effect by which the acoustic physics of recombination are imprinted onto the 21-cm power spectrum during cosmic dawn, resulting in robust velocity-induced acoustic oscillations (VAOs). These act as a new standard ruler at z~20, opening up searches for early dark energy and perhaps resolving the H0 tension.