Education
- Massachusetts Institute of Technology (S.B. Physics, 2003)
- Princeton University (Ph.D. Physics, 2008)
Honors and Awards
- 2018 ICO Prize of the International Commission for Optics
- Office of Naval Research Young Investigator Award
- Downsbrough Early Career Professorship
- Packard Fellowship
- Kaufman Foundation New Investigator Grant
- Alfred P. Sloan Research Fellowship
- Kavli Fellowship of the National Academy of Sciences
- Fine postdoctoral fellowship
- Azrieli postdoctoral fellowship
- Ray Grimm computational physics award
- NSERC graduate fellowship
Selected Publications
Topological protection of photonic mid-gap defect modes, Jiho Noh, Wladimir A Benalcazar, Sheng Huang, Matthew J Collins, Kevin Chen, Taylor L Hughes, and Mikael C Rechtsman, Nature Photonics, 12, 408–415 (2018)
Photonic topological boundary pumping as a probe of 4D quantum Hall physics, Oded Zilberberg, Sheng Huang, Jonathan Guglielmon, Mohan Wang, Kevin P. Chen, Yaakov Kraus, Mikael C. Rechtsman, Nature, 553:59-62 (2018).
Experimental observation of optical Weyl points and fermi arc-like surface states, Jiho Noh, Sheng Huang, Daniel Leykam, YD Chong, Kevin P Chen, and Mikael C Rechtsman, Nature Physics, 13(6):611–617 (2017).
Topologically protected bound states in photonic parity-time-symmetric crystals, S Weimann, M Kremer, Y Plotnik, Y Lumer, S Nolte, KG Makris, M Segev, MC Rechtsman, and A Szameit, Nature Materials, 16:433438 (2017).
Disorder-induced floquet topological insulators, Paraj Titum, Netanel H Lindner, Mikael C Rechtsman, and Gil Refael, Physical Review Letters, 114(5):056801 (2015).
Observation of novel edge states in photonic graphene, Y Plotnik, MC Rechtsman, D Song, JM Zeuner, A Szameit, M Segev, Z Chen, Nature Materials 13, 5762 (2014).
Self-localized states in photonic topological insulators, Y Lumer, Y Plotnik, MC Rechtsman and M Segev, Phys. Rev. Lett. 111, 243905 (2013).
Photonic Floquet Topological Insulators, MC Rechtsman, JM Zeuner, Y Plotnik, Y Lumer, D Podolsky, S Nolte, F Dreisow, M Segev, A Szameit, Nature 496,196–200 (2013).
Strain-induced pseudomagnetic field and Landau levels in photonic structures, MC Rechtsman, JM Zeuner, M Heinrich, A Tunnermann, M Segev, A Szameit, Nature Photonics 7, 153-158 (2013).
- See interview by Rachel Won in Nature Photonics: "Can strain magnetize light?"
- See News and Views article in Nature Photonics by Thomas Lepetit
Disorder-enhanced transport in photonic quasicrystals, L Levi, MC Rechtsman, T Schwartz, O Manela, B Freedman, M Segev, Science, 332, 1541 (2011).
Research Interests
Photonics experiment and theory: my group explores the linear, nonlinear, and quantum optics of complex photonic structures. One example is the new field of topological photonics - just recently, we showed that light could be protected from scattering in a photonic crystal structure much as electrons are in a solid-state topological insulator (Rechtsman et al., Nature 496, 196-200 (2013)). What are the device implications for this robustness of photon transport? Can we topologically protect photonic quantum information? Can we use these ideas to bulid tiny optical diodes? How will photon interactions (nonlinearity) alter topological effects?