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Abstract

The following paper considers Alexandrov’s conjecture, that the
ratio of surface area to intrinsic diameter squared of a Riemannian
2-manifold with non-negative curvature has a maximum of π

2 , for sev-
eral classes of surfaces, including tetrahedra, pyramids with an arbi-
trary number of sides, degenerate convex surfaces, and general convex
surfaces. We offer a new proof for the maximum of the ratio over
tetrahedra (this is a previously known result), and new results for
the maximum of this ratio over pyramids with an arbitrary number
of faces and degenerate convex surfaces. We also develop proof tech-
niques which may prove valuable in solving the conjecture for general
convex surfaces.

1 Introduction

This paper seeks to investigate the maximum of the following function:

F (M) =
Surface Area

Intrinsic Diameter2
(1)

where M is a 2-manifold. The first class of manifolds we deal with will be
polytopes, that is, convex polyhedra. We only consider convex surfaces be-
cause F can be made arbitrarily large over manifolds with negative Gaussian
curvature. This function is clearly homothety invariant, so throughout the
paper we may, without loss of generality, take the liberty of assigning an
arbitrary side length to our polytopes. We will denote the geodesic distance
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between x and y (that is, the minimum distance between x and y, where
distance is measured along the surface without entering the ambient space)
by g(x, y). Unless explicitly stated otherwise, diameter should be taken as
intrinsic diameter, the maximum geodesic distance between any two points
on the surface, or, more rigorously, sup{g(x, y)|x, y ∈ M}.

A.D. Alexandrov [2] conjectured in 1955 that F attains a maximum of
π
2

over all Riemannian 2-manifolds. It can easily be seen that this value is
attained by the doubly-covered disk, a degenerate convex surface formed by
gluing two disks along their boundaries, formulating an equivalent conjec-
ture that given the class of convex surfaces with diameter d, surface area is
maximized for the doubly-covered disk.

The first result obtained was an upper bound of F < π which was ob-
tained from the Bishop volume comparison theorem. Regarding further up-
per bounds on F, we have two main results. As the reader will see, the
second makes the first unnecessary, but we present both here to give a more
complete history of the problem.

Theorem [Sakai [5], 1989] Let (S2,g) be a Riemannian structure with
nonnegative curvature on the 2-sphere. Then F (S2, g) < .985π.

Theorem [Shioya [6], 1993] For any nonnegatively curved Riemannian
metric g on the 2-sphere S2, we have F (S2, g) ≤ (5

2

√
10− 7)π < .906π.

The other historical result we present here deals specifically with tetra-
hedra and will be discussed in detail in the next section.

Another aspect of the problem worth mentioning is the difficulty of ac-
tually determining the intrinsic diameter of a 2-manifold. A paper [Agarwal
[1], 1997] developing an algorithm for finding the intrinsic diameter of a poly-
tope using a star unfolding technique is, to our knowledge, the most current
research in that area. However, it is fairly inefficient, running in O(n8 log(n))
time, and has not yet manifested into an actual program as far as we could
determine.

You will see that most of the time, once the intrinsic diameter is de-
termined, the problem usually comes to a solution using basic geometric
techniques.
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Figure 1: Tetrahedron unfolded into the plane of ABC.

2 Tetrahedra

Theorem [Makai [4], 1973] For any tetrahedron ABCD, F (ABCD) ≤
3
√

3/4. This holds with equality if and only if ABCD is a regular tetrahe-
dron.

Here we give a different proof than Makai originally did in order to be
able to generalize the proof of the tetrahedron case to pyramids later in the
paper, but we begin by following the beginning of Makai’s paper.

Proof. First we prove that for a regular tetrahedron, the intrinsic diameter
comes between the apex and the center of the base triangle. Let our regular
tetrahedron be called ABCD. Let O be the center of the face ABD, and
let our edge length be 2. Then the geodesic diameter between O and C is
g(C, O) = 4

√
3/3. Let P and Q be any points contained in the faces ABD

and BDC, respectively. Then we cover the plane by rolling our tetrahedron
repeatedly about its edges and labeling the points touched by A, B, C, and
D accordingly. We now have a net of triangles covering the plane. We pick a
face ABD and label P0 where P would normally lie in our tetrahedron’s face.
Similarly, we label Qi in each triangle BDC on the plane. If we now erase our
labelings of A, B, C, and D on the plane, we are left with a net of the points Qi

with P0 lying in one regular triangle formed by QiQjQk. This regular triangle
has side length 4 and we have that g(P, Q) ≤ min(PQi, PQj, PQk) ≤ 4

√
3/3.

This proves that for any P we choose, we can be at most 4
√

3/3 away from
Q. Since our surface area is 4

√
3 we have that F = 3

√
3/4.

Now, we let ABCD be an arbitrary tetrahedron. We unfold the faces
DAC, DCB, and DBA about the edges AC, CB, and BA respectively into
the plane of ABC (see Figure 1). Since we now have three D’s, we let Di be
the vertex D that is opposite vertex i in our unfolding. We assume that our
unfolding has points A, B, and C either on the boundary or in the interior
of the triangle DADBDC . If A, B, and C happen to lie outside this triangle,
we just relabel our vertices and unfold again around our new base ABC such
that A, B, and C do not lie outside the triangle. We circumscribe the triangle
DADBDC with a circle Γ having center Q. Without loss of generality, we can
assume that the radius of Γ is 1. For our proof, we must now prove that Q
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Figure 2: Tetrahedron folded all the way into the plane of ABC.

lies inside the triangle ABC and depart from Makai’s proof.
Assume for now that in the unfolding of our tetrahedron from above,

the vertices A, B, and C lie in the segments DBDC , DADC , DADB re-
spectively. Then, since A, B, and C necessarily lie on the midpoints of
DBDC , DADC , DADB, proving that Q lies inside ABC is equivalent to
proving that Q lies inside DADBDC . Proving that Q lies inside DADBDC

is equivalent to proving that the points DA, DB, DC do not lie in any open
half circle of γ. Without loss of generality we assume that ∠DADBDC ≥
∠DCDADB ≥ ∠DBDCDA. Thus, proving that DA, DB, DC do not lie in
any open half circle is equivalent to proving our claim: α ≤ π/2 where
α ≡ ∠DADBDC .

Proof of claim: Since A, B, and C lie on the midpoints of DBDC , DADC , DADB,
our triangle DADBDC is composed of four similar triangles, ABDC , DABC, ADBC,
and ABC with α = ∠BDAC = ∠ADCB = ∠BAC = ∠ACDB. When trian-
gles ADBC and ABDC are folded up, segments ADB and ADC must meet
at some point. But if α > π/2, then the closest these two sides can get is
when both sides are folded all the way over until they are both again in the
plane of ABC, and when they are folded like this, DB and DC can never
meet (see Figure 2).

Recall that we assumed that the vertices A, B, and C lie in the segments
DBDC , DADC , DADB respectively. Our argument still holds since by mov-
ing the vertex B inwards along the bisectors of angles ∠DADBDC we can only
increase our angle ∠ABDC . Vertices A and C hold similarly. This concludes
the proof of our claim.

The reader should notice that if α = π/2 then DA, DB, DC lie in a closed
half circle. In this case, the only possible tetrahedron that can be constructed
is the degenerate tetrahedron folded with triangles ADBC and ABDC folded
flat on top of triangles DABC and ABC.

Now that we know that Q, the center of our circumcircle, lies in the
interior of triangle ABC, we know that g(D, Q) = 1, and thus, that the
intrinsic diameter of ABCD is at least 1. If it happens to be larger, F can
only decrease, so we do not bother trying to prove what the intrinsic diameter
actually is right now.

For any unfolding of a tetrahedron that does not have the vertices A,
B, and C lying in the segments DBDC , DADC , DADB respectively, if we
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unfold as above, we can clearly increase the surface area by moving A, B,
and C until they do lie in these segments. Thus, we must now only maximize
surface area for a tetrahedron that has A, B, and C in these segments. This
is the same as maximizing the area of a triangle inscribed in our circle of
radius 1. This maximum obviously comes when our triangle is an equilateral
triangle, and this equilateral triangle folds up into our regular tetrahedron.
Note that we cannot move A, B, or C outside the triangle DADBDC because
of our assumption above. Intuitively, this is because once we do, our intrinsic
diameter jumps from being between some point in the interior of the base
and the apex to being between some point on the boundary of the base and
a point on the opposite face. Also, we know that if A, B, or C did lie outside
the triangle, we could rename our vertices and unfold again to get A, B, and
C inside the triangle. Therefore, if A, B, and C inside the triangle do not
maximize F, A, B, and C outside the triangle do not either. This concludes
the proof of our theorem.

3 Pyramids I

Now we discuss pyramids. We define a pyramid to be a convex polytope
with n faces. One of these faces is a base polygon with n-1 sides, and the
other n-1 faces are triangles. Similarly to the tetrahedron, we try to unfold
pyramids and maximize F. However, this time we use a little different type
of unfolding. Instead of unfolding around a base, we use a star unfolding as
in [1] and [3]. We explain later what the star unfolding is. First, we will
state and prove our first results about pyramids.

Let Pn be the set of all pyramids having n faces such that n-1 of the
faces are congruent isosceles triangles and the other face is a regular polygon
having n-1 sides. Then we have the following three theorems:

Theorem 1. If n=5 or n=7, then the maximum of F over Pn comes for a
pyramid ρ such that H(ρ) = G(ρ).

Theorem 2. If n=6 or n ≥ 8 then the maximum of F over Pn comes from
the pyramid with zero height.

Theorem 3. As n approaches infinity, Pn becomes the set of right cones
with circular bases, and the maximum of F over this limit set comes when
our cone has zero height (and therefore, is the doubly covered disk).
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Figure 3: Pyramid with ϕ and c labeled appropriately.

Before proving the theorems, we should define h, a, and b that were used
in Theorem 1. For a pyramid ρ ∈ Pn, H(ρ) is the length of the shortest path
between the center of the base and the apex. G(ρ) is the length between a
vertex of the base and the farthest point from this vertex. One should notice
immediately that for all ρ ∈ Pn, the intrinsic diameter is either G(ρ) or H(ρ).
The proof of the theorems is largely calculational because we have very nice
pyramids for which we can directly calculate F.

Proof of Theorems. The proof of the tetrahedron case above gives us a good
idea of how to attack the problem, and the proof relies on the fact that
three points define a circle. We consider for now only the case in which our
pyramid is a member of Pn (and therefore unfolds about the base such that
all instances of the apex lie in a common circle). Let the angle across from
each of the two sides of equal length on each triangular face be ϕ. Let s be
the length of the sides of the base polygon. For any ρ ∈ Pn, we have that
H(ρ) = s(tan (π/2−π/(n−1))+tan (ϕ))

2
. Let G(ρ) come between two points x and

y. Then, we must have that a(x, y) = b(x, y) where a(x, y) is the distance
between x and y when measured by first going up a triangular face and
b(x, y) is the distance between x and y when measured by first going across
the base. Otherwise, we can move x or y a little bit and increase G. Finally
let α = n−1

2
(π − 2ϕ). Now we split to two cases.

Case 1: n is odd. Then, define t as the length of the sides that are not
length s on the triangles and d as the distance from the apex down the edge
along this triangle to one of the endpoints of the segment realizing G. Define
β = π/2−π/(n−1)+ϕ. Let c be the distance from one corner of the base to
the opposite corner, then c = s

sin (π/(n−1))
. We have the following explicit equa-

tions: a =
√

t2 + d2 − 2dt cos α and b =
√

(t− d)2 + c2 − 2(t− d)c cos β.

Since a = b, we have that d = 2tc cos β−c2

2t cos α−2t+2c cos β
.

Case 2: n is even. Then define t as the height of the isosceles triangles
and d as the distance from the apex to one of the endpoints of the segment
realizing G. Let z be the length of the sides of the isosceles triangles, then

z =
√

t2 + s2

4
. Let c be the distance between a corner of the base and the

midpoint of the opposite edge, then c = s(sin (π/2−π/(2n−2)))
2 sin (π/(2n−2))

. We have the

following explicit equations: a =
√

z2 + d2 − 2dz cos α and b = c + t − d.
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Since a = b, we have d = c2+t2−z2+2tc
2c+2t−2z cos α

.
Now we can easily compute F (ϕ) for any value of ϕ. We have a simple

one variable maximization problem with the condition that π/2−π/n ≤ ϕ <
π/2. When n=5, we have that F has a maximum of 1.2799 at ϕ = 1.1310.
This maximum comes precisely when G=H. When n=7, F has a maximum
of 1.3405 at ϕ = 1.2213. Again here, we have that G=H. When n=6 or
n ≥ 8, F has a maximum when ϕ = π/2 − π/n, that is when ρ is the flat
pyramid. One should note that although we assumed n > 4, when we use
this same process with n=4, we get that F has a maximum of 1.2990 = 3

√
3

4
at

ϕ = 1.0472 = π/3. This is precisely what we proved above. This concludes
the proof of Theorems 1 and 2, so now we finish Theorem 3.

If one computes the maximum of F for arbitrarily large n, one gets arbi-
trarily close to π/2, but to complete the proof we first need to understand
intuitively what happened above. If we start with an arbitrary pyramid
ρ ∈ Pn and set ϕ very close to π/2, we have a very tall pyramid. This gives
us a diameter between the center of the bottom and the apex and a very small
F. F increases as we decrease the height of ρ until the diameter switches to
being between a corner of the base and somewhere on the opposite face or
edge. This critical value is when G=H, and we may have a maximum here.
We also may have a maximum when we decrease the height of ρ all the way
to zero. The maximum always comes between these two critical heights, and
as n approaches infinity, F is always larger for the pyramid of zero height
than it is for the pyramid that has G=H. Clearly a regular polygon with
infinitely many sides is a disk, and we get that the maximum of F comes
from the doubly covered disk. This concludes the proof of Theorem 3.

4 Pyramids II

We now have a pretty good idea about how F behaves for pyramids, so we
move on to consider general pyramids via the star unfolding. The basic idea
of the star unfolding of a pyramid P about a point x is that we cut along
the shortest paths from x to each vertex. If there happen to be more than
one distinct shortest paths, we just pick one of them arbitrarily to cut along.
Then, the pyramid is unfolded into a plane according to these cuts. Since
our geodesics cannot intersect except at a point (in which case the geodesic
terminates), we have that the star unfolding is a connected polygon in the
plane.
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Figure 4: Line segments that include x are cuts.

Figure 5: Star unfolding about x that is in interior of base.

Figure 4 shows an unfolding of a pyramid into the plane of the base with
point x in the interior of the base and point y at the apex of the pyramid.
We star unfold about x by cutting along the dotted lines. Figure 5 shows the
star unfolding of the pyramid about x.

Figure 6 shows an unfolding of a pyramid with x on the boundary of the
base and y on an opposite edge. We do a star unfolding about x by cutting
along the dotted lines and the solid line segments that contain x. Figure 7
shows this star unfolding.

Now we state a very important theorem about star unfolding.

Theorem [Aronov and O’Rourke [3], 1992] The star unfolding of
any convex polytope does not self-overlap.

Without this theorem, the star unfolding would not be very useful to us
now. An interested reader can see [1] for applications of the star unfolding,
including an algorithm to find the intrinsic diameter of a polytope.

Theorem 4. For any pyramid ρ with n faces, F is maximized for some
ρ ∈ Pn

Sketch of Proof: If ρ is in some sense a right pyramid (the line through the
apex through the center of the base is orthogonal to the base), then all we
have to do to increase F is stretch the shorter sides until they are all the
same length as the longest side. This increases surface area drastically and
barely changes diameter.

Now we consider the case that ρ is not a right pyramid. First, we use the
star unfolding about a point x where points x and y are points that realize the
diameter, and x is somewhere on the base, possibly on the boundary. Then,
there are at least three equivalent shortest paths from x to y in the unfolding
(notice that there are either n or n-1 instances of x in this unfolding). The
existence of three unique ones is guaranteed because otherwise we would be

Figure 6: Line segments that include x are cuts.
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Figure 7: Star unfolding about x that is on boundary of base.

able to move x slightly and increase diameter. Thus, we have a circle defined
by three points with y at the center. Clearly all the other instances of x
lie outside our circle because if they did not, then there would be a shorter
path from x to y. Now we repeatedly deform this figure and increase surface
area without increasing the diameter. We do this by replacing the x’s that
lie outside the circle with x’s lying on the circle. This decreases surface area
slightly, but then we maximize for the new pyramid given that all instances
of x lie on the circle. This maximization adds more area than was originally
lost because the instances of x lying outside the circle have to be fairly close
to the circle–otherwise x and y would not realize our diameter. If our base is
not regular, we can again increase surface area as we did above by stretching
the shorter sides and leaving the x’s fixed on the circle. The only tricky
part of this proof seems to be guaranteeing that our diameter does not jump
from being G to being H as they were defined above. Clearly, this is not a
problem for most pyramids, only ones that are in a certain range of height
(recall that above the pyramids with smaller height had G as the diameter
and taller pyramids had H as the diameter). Since we’re not taking short
pyramids and turning them into tall ones or vice versa, we only have to worry
about this certain range. One reassuring fact about this process is that even
if those pyramids in this range do have diameters that jump, the difference
in G and H is not large enough relative to the added surface area to decrease
F. Thus, we have ended up with a ρ ∈ Pn with larger F than the original
ρ.

5 Degenerate Convex Surfaces

Given a closed, convex curve in the plane, its associated doubly-covered
convex surface is formed by gluing two copies of the surface bounded by the
curve together at equivalent points on their boundaries. We will refer to
the two halves of the surface separated by the boundary as faces, and the
projection of a point as simply the equivalent point on the interior of the
other face.

We will proceed to prove that F ≤ π
2

for doubly-covered convex surfaces,
but first we need a preliminary result.
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Figure 8: The chord containing two points on a degenerate convex surface

Lemma 5. Given a doubly-covered convex surface, S, its intrinsic diameter
is equal to the Euclidean diameter, dE, of its boundary, γ.

dE is the distance between two points on γ through the ambient space
contained by γ. In this case, the ambient space is S itself, ergo there exist at
least two points, p1,p2 ∈ S such that g(p1, p2) = dE. It suffices to prove that
all other points have a geodesic distance not greater than dE.

Let x, y ∈ S. If they both lie on the same face, including γ, then there is
a chord of γ that contains x and y. The maximum length of a chord is given
by the Euclidean diameter, dE. Therefore, g(x, y) ≤ dE.

Suppose x, y are on opposite faces. Then there is a chord that contains x
and the projection of y, and vice versa. Because the two faces are identical,
the chords meet at the same points along γ, forming a closed curve of twice
the length of the chords. Since the maximum distance of two points along a
closed curve is one-half of the curve’s length, and the maximum length of a
chord in S is dE, g(x, y) ≤ 2dE

2
, which is what we set out to prove.

Theorem 6. F ≤ π/2 for doubly-covered convex surfaces.

Given the previous lemma, this statement is equivalent to proving that
the disk is the convex, planar body containing the greatest area for any given
Euclidean diameter.
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This result is known as the isodiametric theorem, and was proven as early
as the 1880’s.

6 General Convex Surfaces

Any result proven over smooth, convex surfaces can, in effect, be extended
to convex surfaces with polygonal boundaries, since any convex surface can
be approximated arbitrarily closely by a smooth convex surface. One issue
that arises in the transition from smooth to polygonal convex surfaces is the
introduction of singularities in the form of vertices, but that can generally be
worked around since length-minimizing geodesics do not intersect vertices.

In essence, this leads to an avenue of approach to Alexandrov’s conjecture
opposite to that presented by the first sections - instead of approximating
smooth surfaces with polygonal ones, try to prove the conjecture for smooth
surfaces and then approximate the polygonal ones. What follows are the
germs of two proof techniques that may be useful in attacking the conjecture.

First, given the convex, smooth, compact, non-degenerate surface γ em-
bedded in Euclidean 3-space, fix a point, p, in its interior. The choosing of
p may or may not make a difference in the final proof, but it might be easier
to place it halfway along a major or minor axis.

Define a function, f , giving the distance from p to the surface along
a half-line in a given direction. Since this surface is non-degenerate, we’ll
need two angles to describe the half-line, as thus: f(θ1, θ2) = d(p, γ(θ1, θ2)),
where d is standard Euclidean distance. This function inherits continuity
and smoothness from those features of the surface.

The surface area local to γ(θ1, θ2) can be approximated by the surface
area of a Taylor polynomial in θ1 and θ2.

Several inequalities can be given, such as f(θ1 + π, θ2) + f(θ1, θ2) ≤ d,
and f(θ1, θ2 + π) + f(θ1, θ2) ≤ d. However, these two inequalities do not
completely describe the system. If a more complete description might be
found, it may be possible to find a minimal upper bound for the surface area
given a fixed diameter.

Secondly, given a strictly convex, smooth, non-degenerate surface S, there
exists at least one minimum among the pairs of points whose normals coincide
(referred to in some circles as the 2-periodic billiard trajectory of minimal
length within the table bounded by the surface).

Using the normal line formed by one of these minimums as an axis, rotate
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Figure 9: A local approximation of the surface area of an ellipsoid

Figure 10: The foliating half-plane of an ellipsoid about the minor axis

a half-plane bounded by the axis around in a circle to foliate the surface with
curves. Because the curves are the intersection of a plane with the surface,
they are guaranteed to be planar curves, and because the axis was chosen so
that the tangencies at the beginning and end of the curves are parallel to the
foliating plane, they will all be legitimate functions in the plane.

The following diagram gives an example of one of the foliated curves
at angle θ about the axis. Functions that will be defined on the curve,
parameterized as γθ(x) with respect to the axis, are given as follows: Lθ(x),
the length of the curve at distance x along the axis, and κθ(x), the planar
curvature at point γθ(x). The length of the axis, r, is fixed for any family of
foliated curves about a given axis.

By manipulating the above functions and their expressions in terms of x,
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Figure 11: One of the curves foliating a manifold

given by Lθ(x) =
∫ x

0
(1 + (γθ′(x))2)

1
2 and κθ(x) = γθ ′′(x)

(1+(γθ ′(x))2)
3
2
, in addition

to the formula for surface area of a surface of revolution of a parameterized
curve, given by ∆θ

∫ x

0
γθ(x)(1 + (γθ′(x))2)

1
2 , where ∆θ is the angle of revo-

lution, we can determine a formula for the surface area of the entire surface
area in terms of infinitesimal surfaces of revolution parameterized by Lθ(x)
and κθ(x) as follows:

AS =

∫ 2π

0

∫ r

0

dLθ(x)

dx
[

∫ x

0

∫ x′

0

κθ(x
′′)(

dLθ(x
′′)

dx′′
)3dx′′dx′+γθ′(0)x′|x0 ]dxdθ (2)

This equation might not seem entirely helpful, and in addition, probably
needs an extra factor of curvature in the inner-most integral to approximate
the surface closely enough to make the integration valid.

To add to the problems, there’s an undefined term, γθ′(0), multiplied by
both x and zero on the far right-hand side (since γθ begins and ends with a
vertical tangency, its derivative at 0 and r are undefined).

However, if some progress could be made in interpreting it, it might be
possible to get at Alexandrov’s conjecture. The doubly-covered disk has very
distinct foliated curves (i.e., all of the same length, with one point of positive
curvature and the rest having nearly zero curvature), so it follows that it
would probably be a maximum of some sort of the above formula.
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7 Conclusion

Since we are writing this paper during a brief summer research program, we
have not been able to complete all of our endeavors. However, techniques
similar to the techniques discussed in the sketch of Theorem 4 using the
star unfolding might prove fruitful in proving Alexandrov’s conjecture for
all convex polytopes, and similarly for smooth convex surfaces in the last
section.

We would like to thank all of the people at Penn State University that
made this research possible, including Mohammad Ghomi, Misha Guysinksi,
and Sergei Tabachnikov.
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